If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-18X+82=10
We move all terms to the left:
X^2-18X+82-(10)=0
We add all the numbers together, and all the variables
X^2-18X+72=0
a = 1; b = -18; c = +72;
Δ = b2-4ac
Δ = -182-4·1·72
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6}{2*1}=\frac{12}{2} =6 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6}{2*1}=\frac{24}{2} =12 $
| 11r^2-13=4r | | 2(1=m)=16 | | .003x-12=18.6 | | 3x-17+2x+3+155=180 | | 3x-17+2x+3-+155=180 | | 12x-36=28x+76 | | 36=2/3(x-30) | | 3x-17-2x+3-+155=180 | | 1.2n=0.68=5 | | 10a/17a=9/13 | | 4(b-6)=2b+4 | | 11x+11+110=180 | | 2x+3+3x-17+155=180 | | v+5/6=-1/5 | | .4x-4=20 | | -3(-2x-3)=-3 | | 2x+3-3x-17+155=180 | | y2−12y+136=0 | | 45=3(x-20) | | 1.4+6=3.4x-4 | | 180=-3(4-8p | | 5-35b=-65 | | .4x-4=30 | | y2−12y+36=−100 | | -27=1.8c | | v+(5/6)=-(1/5) | | 3y-8y=22 | | y=5*8+39 | | 3x+2+82=180 | | 4x-10=32 | | 5+n/6=8 | | 71=120-(15-n+7.50) |